

	AQA Chemistry (8462) from 2016 Topics C4.1 Atomic structure and the periodic table			
Topic	Student Checklist	R	Α	G
	State that everything is made of atoms and recall what they are			
	Describe what elements and compounds are			
ass	State that elements and compounds are represented by symbols; and use chemical symbols and			
٤	formulae to represent elements and compounds			
mic	Write word equations and balanced symbol equations for chemical reactions, including using			
ato	appropriate state symbols			
4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes	HT ONLY: Write balanced half equations and ionic equations			
ativ	Describe what a mixture is			
rel	Name and describe the physical processes used to separate mixtures and suggest suitable separation			
ols, sot	techniques			
nbc id is	Describe how the atomic model has changed over time due to new experimental evidence, inc discovery			
syr an	of the atom and scattering experiments (inc the work of James Chadwick)			
odel of the atom, symbols, relat electronic charge and isotopes	Describe the difference between the plum pudding model of the atom and the nuclear model of the			
ato cha	atom			
he iic o	State the relative charge of protons, neutrons and electrons and describe the overall charge of an atom			
of t ror	State the relative masses of protons, neutrons and electrons and describe the distribution of mass in an			
el o ect	atom			
bor el	Calculate the number of protons, neutrons and electrons in an atom when given its atomic number and			
еm	mass number			
ldu	Describe isotopes as atoms of the same element with different numbers of neutrons			
sin	Define the term relative atomic mass and why it takes into account the abundance of isotopes of the			
1 A	element			
1.1	Calculate the relative atomic mass of an element given the percentage abundance of its isotopes			
7	Describe how electrons fill energy levels in atoms, and represent the electron structure of elements			
	using diagrams and numbers			
	Recall how the elements in the periodic table are arranged			
	Describe how elements with similar properties are placed in the periodic table			
	Explain why elements in the same group have similar properties and how to use the periodic table to			
	predict the reactivity of elements			
	Describe the early attempts to classify elements			
dic table	Explain the creation and attributes of Mendeleev's periodic table			
c ta	Identify metals and non-metals on the periodic table, compare and contrast their properties			
	Explain how the atomic structure of metals and non-metals relates to their position in the periodic table			
eric	Describe nobel gases (group 0) and explain their lack of reactivity			
od e	Describe the properties of noble gases, including boiling points, predict trends down the group and			
4.1.2 The perio	describe how their properties depend on the outer shell of electrons			
	Describe the reactivity and properties of group 1 alkali metals with reference to their electron			
4.:	arrangement and predict their reactions			
	Describe the properties of group 7 halogens and how their properties relate to their electron			
	arrangement, including trends in molecular mass, melting and boiling points and reactivity			
	Describe the reactions of group 7 halogens with metals and non-metals			
	Chem ONLY: Describe the properties of transition metals and compare them with group 1 elements,			
	including melting points and densities, strength and hardness, and reactivity (for CR, Mn Fe, Co, Ni & Cu)			

	Student Checklist	R	Α	(
4.2.1 Chemical bonds, ionic, covalent and metallic do	Describe the three main types of bonds: ionic bonds, covalent bonds and metallic bonds in terms of			T
	electrostatic forces and the transfer or sharing of electrons			
	Describe how the ions produced by elements in some groups have the electronic structure of a noble gas			T
	and explain how the charge of an ion relates to its group number			
5	Describe the structure of ionic compounds, including the electrostatic forces of attraction, and represent			T
anc	ionic compounds using dot and cross diagrams			
int	Describe the limitations of using dot and cross, ball and stick, two and three-dimensional diagrams to			Ť
a Va	represent a giant ionic structure			
9	Work out the empirical formula of an ionic compound from a given model or diagram that shows the			T
i,	ions in the structure			
<u>.</u> 0	Describe covalent bonds and identify different types of covalently bonded substances, such as small			Ī
ds,	molecules, large molecules and substances with giant covalent structures			
no	Represent covalent bonds between small molecules, repeating units of polymers and parts of giant			Ī
a E	covalent structures using diagrams			
nic	Draw dot and cross diagrams for the molecules of hydrogen, chlorine, oxygen, nitrogen, hydrogen			Ī
her	chloride, water, ammonia and methane			
1 C	Deduce the molecular formula of a substance from a given model or diagram in these forms showing the			
1.2.	atoms and bonds in the molecule			
4	Describe the arrangement of atoms and electrons in metallic bonds and draw diagrams the bonding in			
	metals			
of	Name the three States of matter, identify them from a simple model and state which changes of state			
ies	happen at melting and boiling points			\perp
ert	Explain changes of state using particle theory and describe factors that affect the melting and boiling			
5	point of a substance			\perp
e D	HT ONLY: Discuss the limitations of particle theory			\perp
뒫	Recall what (s), (l), (g) and (aq) mean when used in chemical equations and be able to use them			
5	appropriately			\bot
ate.	Explain how the structure of ionic compounds affects their properties, including melting and boiling			
<u>ق</u>	points and conduction of electricity (sodium chloride structure only)			+
ucture are r substances	Explain how the structure of small molecules affects their properties			\perp
re a tan	Explain how the structure of polymers affects their properties			\perp
nps rps	Explain how the structure of giant covalent structures affects their properties			+
S S	Explain how the structure of metals and alloys affects their properties, including explaining why they are			
D S	good conductors			+
an	Explain why alloys are harder than pure metals in terms of the layers of atoms			╄
ing	Explain the properties of graphite, diamond and graphene in terms of their structure and bonding			╄
puo	Describe the structure of fullerenes, and their uses, including Buckminsterfullerene and carbon			
, bc	nanotubes Chara CNUV. Compare the dimensions of papenarticles to other particles and evaluin the effect of their			+
<u>0</u>	Chem ONLY: Compare the dimensions of nanoparticles to other particles and explain the effect of their			
4.2.2 How bonding and structure are related to the properties of substances	surface area to volume ratio on their properties			╁
.2	Chem ONLY: Discuss the applications of nanoparticles and their advantages and disadvantages, including uses in medicine, cosmetics, fabrics and the development of catalysts			

	AQA Chemistry (8462) from 2016 Topics C4.3 Quantitative chemistry			
Topic	Student Checklist	R	Α	G
	State that mass is conserved and explain why, including describing balanced equations in terms of			
nts, he n	conservation of mass			1
4.3.1 Chemical measurements, conservation of mass and the quantitative interpretation	Explain the use of the multipliers in equations in normal script before a formula and in subscript			
rer : an eta	within a formula			1
asu ass rpr	Describe what the relative formula mass (Mr) of a compound is and calculate the relative formula			
me f m nte	mass of a compound, given its formula			1
alı no nei⊫	Calculate the relative formula masses of reactants and products to prove that mass is conserved in a			
mic Itio ativ	balanced chemical equation			
Che rva ntit	Explain observed changes of mass during chemical reactions in non-enclosed systems using the			1
.1 C nse uar	particle model when given the balanced symbol equation			
4.3 col	Explain why whenever a measurement is made there is always some uncertainty about the result			l
	obtained			
in Ses	HT ONLY: State that chemical amounts are measured in moles (mol) and explain what a mol is			l
4.3.2 Use of amount of substance in relation to masses of pure substances	with reference to relative formula mass and Avogadro's constant			
tan bst	HT ONLY: Use the relative formula mass of a substance to calculate the number of moles in a given			1
nps s an	mass of the substance			<u> </u>
of si ure	HT ONLY: Calculate the masses of reactants and products when given a balanced symbol equation			<u> </u>
nt c of p	HT ONLY: Use moles to write a balanced equation when given the masses of reactants and			l
oni	products (inc changing the subject of the equation)			<u> </u>
am ass	HT ONLY: Explain the effect of limiting the quantity of a reactant on the amount of products in			l
of m	terms of moles or masses in grams			
Jse 1 to	Calculate the mass of solute in a given volume of solution of known concentration in terms of mass			1
.2 L tion	per given volume of solution			
4.3 ela	HT ONLY: Explain how the mass of a solute and the volume of a solution is related to the concentration of the solution			1
	Chem ONLY: Explain why it is not always possible to obtain the calculated or expected amount of a			
/ of	product			1
mc	Chem ONLY: Calculate the theoretical amount of a product and percentage yield of a product using			
onc	the formula % yield = mass of product made/max theoretical mass of product x 100			1
and atom economy of mical reactions	Chem & HT ONLY: Calculate the theoretical mass of a product from a given mass of reactant and			
om ea	the balanced equation for the reaction			1
d at al r	Chem ONLY: Describe atom economy as a measure of the amount of reactants that end up as useful			
	products			1
eld	Chem ONLY: Calculate the percentage atom economy of a reaction to form a desired product using			
Yic C	the equation % atom economy =RfM of desired product/sum of RfM of all reactants x 100			1
4.3.3 Yield che	Chem & HT ONLY: Explain why a particular reaction pathway is chosen to produce a specified			
4	product, given appropriate data			
J.	Chem & HT ONLY: Calculate the amount of solute (in moles or grams) in a solution from its			1
וא כר	concentration in mol/dm³			
tior Im³	Chem & HT ONLY: Calculate the concentration of a solution when it reacts completely with another			1
tra ol/c	solution of a known concentration			
me	Chem & HT ONLY: Describe how to carry out titrations of strong acids and strong alkalis and			1
4.3.4 Using concentrations of solutions in mol/dm³	calculate quantities in titrations involving concentrations in mol/dm³ and g/dm³			<u> </u>
ng c	Chem & HT ONLY: Explain how the concentration of a solution in mol/dm3 is related to the mass of			ł
Jsir Iuti	the solute and the volume of the solution			<u> </u>
.4 L so	Chem & HT ONLY: Explain what the volume of one mole of any gas at room temperature is			<u> </u>
4.3	Chem & HT ONLY: Calculate the volume of a gas at room temperature and pressure from its mass			ł
-	and relative formula mass			<u> </u>

Tonic	Student Checklist	R	Α	(
Topic	Describe how metals react with oxygen and state the compound they form, define oxidation and	K	A	
	reduction			
tals	Describe the arrangement of metals in the reactivity series, including carbon and hydrogen, and use the			
met	reactivity series to predict the outcome of displacement reactions			
o	Recall and describe the reactions, if any, of potassium, sodium, lithium, calcium, magnesium, zinc, iron			
jŧ,	and copper with water or dilute acids			
Ę	Relate the reactivity of metals to its tendency to form positive ions and be able to deduce an order of			
4.4.1 Reactivity of metals	reactivity of metals based on experimental results			-
	Recall what native metals are and explain how metals can be extracted from the compounds in which			
	they are found in nature by reduction with carbon			L
	Evaluate specific metal extraction processes when given appropriate information and identify which			
	species are oxidised or reduced HT ONLY: Describe oxidation and reduction in terms of loss and gain of electrons			+
	HT ONLY: Write ionic equations for displacement reactions, and identify which species are oxidised			
	and reduced from a symbol or half equation			
	HT ONLY: Explain in terms of gain or loss of electrons that the reactions between acids and some			l
	metals are redox reactions, and identify which species are oxidised and which are reduced (Mg, Zn, Fe			
	+ HCl & H₂SO₄)			
	Explain that acids can be neutralised by alkalis, bases and metal carbonates and list the products of each			
	of these reactions			
	Predict the salt produced in a neutralisation reaction based on the acid used and the positive ions in the			
	base, alkali or carbonate and use the formulae of common ions to deduce the formulae of the salt			
	Describe how soluble salts can be made from acids and how pure, dry samples of salts can be obtained			Ī
ids	Required practical 1: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or			Ī
ę ac	carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the			
.o s	solution			
ö	Recall what the pH scale measures and describe the scale used to identify acidic, neutral or alkaline			
act	solutions			L
. Re	Define the terms acid and alkali in terms of production of hydrogen ions or hydroxide ions (in solution),			
4.4.2 Reactions of acids	define the term base			-
4	Describe the use of universal indicator to measure the approximate pH of a solution and use the pH scale to identify acidic or alkaline solutions			
	Chem ONLY: Describe how to carry out titrations using strong acids and strong alkalis only (sulfuric,			+
	hydrochloric and nitric acids to find the reacting volumes accurately			
	Chem & HT ONLY: Calculate the chemical quantities in titrations involving concentrations in mol/dm ³			l
	and in g/dm³			
	Chem ONLY: Required practical 2: determination of the reacting volumes of solutions of a strong acid			Ī
	and a strong alkali by titration			
	HT ONLY: Use and explain the terms dilute and concentrated (in terms of amount of substance) and			
	weak and strong (in terms of the degree of ionisation) in relation to acids			
	HT ONLY: Explain how the concentration of an aqueous solution and the strength of an acid affects the			
	pH of the solution and how pH is related to the hydrogen ion concentration of a solution			1
	Describe how ionic compounds can conduct electricity when dissolved in water and describe these			
	solutions as electrolytes Describe the process of electrolysis			ł
sis	Describe the electrolysis of molten ionic compounds and predict the products at each electrode of the			ł
<u>6</u>	electrolysis of binary ionic compounds			
4.4.3 Electrolysis	Explain how metals are extracted from molten compounds using electrolysis and use the reactivity series			t
ä	to explain why some metals are extracted with electrolysis instead of carbon			
4.3	Describe the electrolysis of aqueous solutions and predict the products of the electrolysis of aqueous			Ì
4.	solutions containing single ionic compounds			
				+

HT ONLY: Describe the reactions at the electrodes during electrolysis as oxidation and reduction reactions and write balanced half equations for these reactions

	AQA Chemistry (8462) from 2016 Topics C4.5 Energy changes			
Topic	Student Checklist	R	Α	G
S	Describe how energy is transferred to or from the surroundings during a chemical reaction			
pu	Explain exothermic and endothermic reactions on the basis of the temperature change of the			
rmic and reactions	surroundings and give examples of everyday uses			
r.e	Required practical 4: investigate the variables that affect temperature changes in reacting solutions			
4.5.1 Exothermic and endothermic reaction:	Describe what the collision theory is and define the term activation energy			
Exo	Interpret and draw reaction profiles of exothermic and endothermic reactions, inc identifying the			
1 to	relative energies of reactants and products, activation energy and overall energy change			
4.5.1 endot	HT ONLY: Explain the energy changes in breaking and making bonds and calculate the overall energy			
•	change using bond energies			
70	Chem ONLY: Describe what a simple cell and a battery is and how they produce electricity			
and	Chem ONLY: Describe why alkaline batteries are non-rechargeable, state why some cells are			
cells	rechargeable and evaluate the use of cells			
Chemical of fuel cells	Chem ONLY: Describe fuel cells and compare fuel cells to rechargeable cells and batteries			
ے ت	Chem ONLY: Describe the overall reaction in a hydrogen fuel cell			
4.5.2	Chem & HT ONLY: Write half equations for the electrode reactions in a hydrogen fuel cell			